Abstract
Objective: To increase the carotenoid concentration in skin by drinking carrot juice to generate an optical response and to determine an in vivo absorption spectrum of the carotenoids and compare it to ex vivo absorption spectra.
Material and methods: The first author of the presented study consumed carrot juice over a period of several weeks and during this time regularly performed optical reflection measurements on his palm. The spectroscopic measurements were carried out with a fiber-based sensor using a thermal light source. Absorption coefficients have been deduced from the diffuse reflectance data. Measurements were also performed on a β-carotene solution, on carrot juice and its extracted carotenoids. The correlation coefficient between carrot juice intake in liters and the optical skin signal was used to select an optimal wavelength for carotenoid detection (493 nm).
Results: An in vivo signal of the carotenoids was found in the spectral range from 400 nm to 580 nm. A 1-l intake of carrot juice resulted in a 0.6% decrease of the diffuse reflectance. The absorption of hemoglobin interferes with the carotenoid signal even though the blood was pressed away. Consequently, a method was used that could lead to the elimination of this disturbance and an in vivo absorption spectrum from the carotenoids in skin was determined by way of trial. The in vivo carotenoid spectrum and that of the carrot juice were both found to a similar extent to be spectrally broader than the absorption spectrum of β-carotene dissolved in cyclohexane.
Conclusion: Detection of carotenoids in skin is possible by diffuse reflectance measurements with a simple spectroscopic optical setup, as it is described in this article. As found by comparing different publications, several geometries for illumination and detection support carotenoid quantification. However, the fiber probe described here is not limited to carotenoid detection and it does not need arrangement of several optical elements such as lenses, mirrors or apertures and therefore requiring less effort for development. To eliminate the interference of hemoglobin, the authors suggest the combination of pressure and the described software method. Other publications have reported hemoglobin interference with respect to in vivo carotenoid measurement. As the carotenoids are mainly found in the bloodless epidermis, setups are suggested which use smaller sampling volumes.
Zusammenfassung
Ziel: Erhöhen der Karotinoidkonzentration in der Haut, um messbare Veränderungen der optischen Eigenschaften der Haut zu erzeugen. Bestimmen eines In-vivo-Absorptionsspektrums der Karotinoide und Vergleich mit Ex-vivo-Absorptionsspektren.
Material und Methoden: Über einen Zeitraum von mehreren Wochen nahm der Erstautor der Studie Karottensaft zu sich und führte währenddessen regelmäßige optische Reflektionsmessungen am Handballen durch. Die spektroskopischen Messungen wurden mit einem Faser-Sensor und einer thermischen Lichtquelle durchgeführt. Aus den Reflektionsspektren wurden Absorptionskoeffizienten ermittelt. Weitere Messungen wurden an einer Beta-Carotin-Lösung, an Karottensaft und an dessen extrahierten Karotinoiden durchgeführt. Es wurde eine optimale Wellenlänge für die Karotinoiddetektion (493 nm) bestimmt, bei der die Korrelation zwischen der diffusen Reflektion der Haut und der Menge an getrunkenem Karottensaft am höchsten war.
Ergebnisse: Im Wellenlängenbereich von 400 bis 580 nm wurde ein In-vivo-Signal der Karotinoide gemessen. Pro Aufnahme von 1 l Karottensaft verringerte sich die diffuse Reflektion um 0.6%. Allerdings interferiert die Absorption von Hämoglobin mit der Karotinoidmessung, obwohl das Blut durch Anpressen des Messkopfes weggedrückt wurde. Folglich wurde eine Methode verwendet, die eine Korrektur dieses Störeinflusses ermöglichen könnte. Versuchsweise wurde hiermit ein In-vivo-Absorptionsspektrum der Karotinoide ermittelt. Es wurde festgestellt, dass das Signal der Karotinoide aus dem Karottensaft und der Haut in einem ähnlichen Ausmaß spektral breiter ist als das in Cyclohexan gelöste Beta-Carotin.
Fazit: Karotinoide in der Haut können mit dem in diesem Artikel beschriebenen, einfachen spektroskopischen Messaufbau detektiert werden. Durch Vergleich mit anderen Versuchen zeigte sich, dass für die Beleuchtung und Detektion verschiedene Geometrien möglich sind. Der hier beschriebene Fasermesskopf ist jedoch nicht auf die Karotinoiddetektion beschränkt und es werden keine zusätzlichen Teile wie Linsen, Spiegel oder Blenden benötigt, womit der Entwicklungsaufwand verringert wird. Um den Störeinfluss durch Hämoglobin zu eliminieren, bietet sich eine Kombination aus Wegdrücken des Blutes und einer softwaretechnischen Korrekturrechnung an. Alternativ sollte die Beleuchtungs- und Detektionsgeometrie weiter verkleinert werden, damit hauptsächlich in der blutfreien Epidermis gemessen wird, denn dort ist die Karotinoidkonzentration am höchsten.
The research project was funded by the Berlin Senate and co-financed by the European Union (European funds for regional development, FKZ 10138595).
[1] Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 2005;1740(2):101–7.10.1016/j.bbadis.2004.12.006Suche in Google Scholar PubMed [2] Lademann J, Schanzer S, Meinke M, Sterry W, Darvin ME. Interaction between carotenoids and free radicals in human skin. Skin Pharmacol Physiol 2011;24(5):238–44.10.1159/000326074Suche in Google Scholar PubMed [3] Darvin M, Zastrow L, Sterry W, Lademann J. Effect of supplemented and topically applied antioxidant substances on human tissue. Skin Pharmacol Physiol 2006;19(5):238–47.10.1159/000093979Suche in Google Scholar PubMed [4] Poljšak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract 2012;2012:135206.10.1155/2012/135206Suche in Google Scholar PubMed PubMed Central [5] Mayne ST, Cartmel B, Scarmo S, Lin H, Leffell DJ, Welch E, Ermakov I, Bhosale P, Bernstein PS, Gellermann W. Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am J Clin Nutr 2010;92(4):794–800.10.3945/ajcn.2010.29707Suche in Google Scholar PubMed PubMed Central [6] Anstey AV. Systemic photoprotection with alpha-tocopherol (vitamin E) and beta-carotene. Clin Exp Dermatol 2002;27(3):170–6.10.1046/j.1365-2230.2002.01040.xSuche in Google Scholar PubMed [7] Bayerl Ch. Beta-carotene in dermatology: does it help? Acta Dermatovenerol Alp Panonica Adriat 2008;17(4):160–2, 164–6.Suche in Google Scholar [8] Stahl W, Heinrich U, Jungmann H, Sies H, Tronnier H. Carotenoids and carotenoids plus vitamin E protect against ultraviolet light-induced erythema in humans. Am J Clin Nutr 2000;71(3):795–8.10.1093/ajcn/71.3.795Suche in Google Scholar PubMed [9] Darvin ME, Haag SF, Meinke MC, Sterry W, Lademann J. Determination of the influence of IR radiation on the antioxidative network of the human skin. J Biophotonics 2011;4(1–2):21–9.10.1002/jbio.200900111Suche in Google Scholar PubMed [10] Alemzadeh R, Feehan T. Variable effects of beta-carotene therapy in a child with erythropoietic protoporphyria. Eur J Pediatr 2004;163(9):547–9.10.1007/s00431-004-1453-6Suche in Google Scholar PubMed [11] Linus Pauling Institute, Oregon State University. Micronutrient Information Center. http://lpi.oregonstate.edu/infocenter/phytochemicals/carotenoids/ [Accessed on June 10, 2013].Suche in Google Scholar [12] Thürmann PA, Steffen J, Zwernemann C, Aebischer CP, Cohn W, Wendt G, Schalch W. Plasma concentration response to drinks containing beta-carotene as carrot juice or formulated as a water dispersible powder. Eur J Nutr 2002;41(5):228–35.10.1007/s00394-002-0381-3Suche in Google Scholar PubMed [13] Meinke MC, Darvin ME, Vollert H, Lademann J. Bioavailability of natural carotenoids in human skin compared to blood. Eur J Pharm Biopharm 2010;76(2):269–74.10.1016/j.ejpb.2010.06.004Suche in Google Scholar PubMed [14] Niedorf F. Entwicklung eines Verfahrens zur quantitativen Auswertung nicht-invasiver reflexionsspektroskopischer Messungen von Beta-Carotin in der Haut. Doctor thesis. Institut für Pharmakologie, Toxikologie und Pharmazie, Tierärztliche Fachhochschule Hannover, 2001.Suche in Google Scholar [15] Darvin ME, Sandhagen C, Koecher W, Sterry W, Lademann J, Meinke MC. Comparison of two methods for noninvasive determination of carotenoids in human and animal skin: Raman spectroscopy versus reflection spectroscopy. J Biophotonics 2012;5(7):550–8.10.1002/jbio.201100080Suche in Google Scholar PubMed [16] Klein J, Darvin ME, Müller KE, Lademann J. Noninvasive measurements of carotenoids in bovine udder by reflection spectroscopy. J Biomed Opt 2012;17(10):101514.10.1117/1.JBO.17.10.101514Suche in Google Scholar PubMed [17] Ermakov IV, Gellermann W. Dermal carotenoid measurements via pressure mediated reflection spectroscopy. J Biophotonics 2012;5(7):559–70.10.1002/jbio.201100122Suche in Google Scholar PubMed [18] Hata TR, Scholz TA, Ermakov IV, McClane RW, Khachik F, Gellermann W, Pershing LK. Non-invasive raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 2000;115(3):441–8.10.1046/j.1523-1747.2000.00060.xSuche in Google Scholar PubMed [19] Bergeson SD, Peatross JB, Eyring NJ, Fralick JF, Stevenson DN, Ferguson SB. Resonance Raman measurements of carotenoids using light-emitting diodes. J Biomed Opt 2008;13(4):044026.10.1117/1.2952075Suche in Google Scholar PubMed [20] Reble C, Gersonde I, Andree S, Eichler HJ, Helfmann J. Quantitative Raman spectroscopy in turbid media. J Biomed Opt 2010;15(3):037016.10.1117/1.3456370Suche in Google Scholar PubMed [21] Darvin ME, Meinke MC, Sterry W, Lademann J. Optical methods for noninvasive determination of carotenoids in human and animal skin. J Biomed Opt 2013;18(6):6123010.1117/1.JBO.18.6.061230Suche in Google Scholar PubMed [22] Zonios G, Dimou A. Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties. Opt Express 2006;14(19):8661–74.10.1364/OE.14.008661Suche in Google Scholar [23] Darvin ME, Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J. One-year study on the variation of carotenoid antioxidant substances in living human skin: influence of dietary supplementation and stress factors. J Biomed Opt 2008;13(4):044028.10.1117/1.2952076Suche in Google Scholar PubMed [24] Martens H, Næs T. Multivariate calibration. West Sussex, UK: John Wiley & Sons Ltd; 1991.Suche in Google Scholar [25] Whitton JT, Everall JD. The thickness of the epidermis. Br J Dermatol 1973;89(5):467–76.10.1111/j.1365-2133.1973.tb03007.xSuche in Google Scholar [26] Overgaard Olsen L, Takiwaki H, Serup J. High-frequency ultrasound characterization of normal skin. Skin thickness and echographic density of 22 anatomical sites. Skin Res Technol 1995;1(2):74–80.10.1111/j.1600-0846.1995.tb00021.xSuche in Google Scholar [27] Jacques SL. Skin optics. Oregon medical laser center news 1998. http://omlc.ogi.edu/news/jan98/skinoptics.html [Accessed on June 10, 2013].Suche in Google Scholar [28] Darvin ME, Fluhr JW, Caspers P, van der Pool A, Richter H, Patzelt A, Sterry W, Lademann J. In vivo distribution of carotenoids in different anatomical locations of human skin: comparative assessment with two different Raman spectroscopy methods. Exp Dermatol 2009;18(12):1060–3.10.1111/j.1600-0625.2009.00946.xSuche in Google Scholar [29] Watzl B, Bub A, Briviba K, Rechkemmer G. Supplementation of a low-carotenoid diet with tomato or carrot juice modulates immune functions in healthy men. Ann Nutr Metab 2003;47(6):255–61.10.1159/000072397Suche in Google Scholar [30] Watzl B, Bub A, Brandstetter BR, Rechkemmer G. Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables. Br J Nutr 1999;82(5):383–9.10.1017/S0007114599001634Suche in Google Scholar [31] Törrönen R, Lehmusaho M, Häkkinen S, Hänninen O, Mykkänen H. Serum β-carotene response to supplementation with raw carrots, carrot juice or purified β-carotene in healthy non-smoking women. Nutr Res 1996;16(4):565–75.10.1016/0271-5317(96)00035-8Suche in Google Scholar [32] Horvitz MA, Simon PW, Tanumihardjo SA. Lycopene and β-carotene are bioavailable from lycopene ‘red’ carrots in humans. Eur J Clin Nutr 2004,58(5):803–11.10.1038/sj.ejcn.1601880Suche in Google Scholar PubMed [33] Pashankar D, Schreiber RA. Jaundice in older children and adolescents. Pediatr Rev 2001;22(7):219–26.10.1542/pir.22.7.219Suche in Google ScholarReferences